首页> 外文OA文献 >Square-root algorithms for maximum correntropy estimation of linear discrete-time systems in presence of non-Gaussian noise
【2h】

Square-root algorithms for maximum correntropy estimation of linear discrete-time systems in presence of non-Gaussian noise

机译:线性系统最大熵估计的平方根算法   存在非高斯噪声的离散时间系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent developments in the realm of state estimation of stochastic dynamicsystems in the presence of non-Gaussian noise have induced a new methodologycalled the maximum correntropy filtering. The filters designed under themaximum correntropy criterion (MCC) utilize a similarity measure (orcorrentropy) between two random variables as a cost function. They are shown toimprove the estimators' robustness against outliers or impulsive noises. Inthis paper we explore the numerical stability of linear filtering techniqueproposed recently under the MCC approach. The resulted estimator is called themaximum correntropy criterion Kalman filter (MCC-KF). The purpose of this studyis two-fold. First, the previously derived MCC-KF equations are revise and therelated Kalman-like equality conditions are proved. Based on this theoreticalfinding, we improve the MCC-KF technique in the sense that the new methodpossesses a better estimation quality with the reduced computational costcompared with the previously proposed MCC-KF variant. Second, we devise somesquare-root implementations for the newly-designed improved estimator. Thesquare-root algorithms are well known to be inherently more stable than theconventional Kalman-like implementations, which process the full errorcovariance matrix in each iteration step of the filter. Additionally, followingthe latest achievements in the KF community, all square-root algorithms areformulated here in the so-called array form. All the MCC-KF variants developedin this paper are demonstrated to outperform the previously proposed MCC-KFversion in two numerical examples.
机译:在存在非高斯噪声的情况下,随机动力学系统状态估计领域的最新发展引发了一种新的方法,即最大熵过滤。根据最大熵准则(MCC)设计的滤波器将两个随机变量之间的相似性度量(熵)用作成本函数。研究表明,它们可以提高估计量对异常值或脉冲噪声的鲁棒性。在本文中,我们探讨了最近在MCC方法下提出的线性滤波技术的数值稳定性。所得的估计量称为最大熵准则卡尔曼滤波器(MCC-KF)。这项研究的目的是双重的。首先,对先前推导的MCC-KF方程进行修正,并证明了相关的卡尔曼式等式条件。基于这一理论发现,从某种意义上说,我们改进了MCC-KF技术,与以前提出的MCC-KF变体相比,新方法具有更好的估计质量,同时降低了计算成本。其次,我们为新设计的改进估算器设计平方根实现。众所周知,平方根算法本质上比传统的类似Kalman的实现更稳定,后者在滤波器的每个迭代步骤中处理完整的误差协方差矩阵。此外,在KF社区取得最新成就之后,所有平方根算法都以所谓的数组形式在此处形成。在两个数值示例中,证明了本文开发的所有MCC-KF变体均优于先前提出的MCC-KFversion。

著录项

  • 作者

    Kulikova, Maria V.;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号